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INTRODUCTION

In pattern recognition literature, and in the area of discriminant analysis, one
commonly finds likelihood-based approaches to the classification problem of classifying a
p-dimensional sample x into one class ni from a population of classes ori, (i = 1, ..., m),
where the classes ari are assumed to be multivariate normally distributed, with separate
means pi and either a common covariance matrix : or individual covariance matrices
Ii. Fisher's linear and quadratic discriminant functions are examples of likelihood-based
discriminants, and are described and discussed in all pertinent literature. A good
introduction is given by Duda and Hart [1973]. Geisser [1964] discusses a Bayesian
approach to classification by deriving the predictive density for a class. In the Bayesian
approach, classification of a new sample is based on the ratios of the predictive densities
of the classes for the data sample x. The subject of this report is the comparison of the
misclassification rates of predictive and likelihood discriminant functions under the
constraint of small training sets and a varying number of training samples per class.

The literature comparing and contrasting the predictive and likelihood-based
approaches is seemingly contradictory and definitely confusing. Kendall, Stuart, and Ord
[1987] note that a complaint against the linear discriminant function is that it does not
take into account the relative sizes of the training sets of the classes. They further state
that the approach of predictive discrimination yields more reliable estimates than an
equivalent likelihood approach. However, Raudys and Jain [1991] assert that Bayesian
density estimates (predictive densities) do not improve performance over the quadratic
discriminant function when sample sizes are different, and do not include the predictive
discriminant function in their discussion of small training set classification.

Most literature acknowledges that the Fisher linear and quadratic discriminant
functions are asymptotically optimal for Gaussian population classes (see Anderson
[1984]). However, since optimality is asymptotic property, i.e., is true for large samples
of the data, the functions are not necessarily optimal for small sample sizes. As a
consequence, Enis and Geisser [1974] claim that the Bayesian-derived predictive density
is optimal in minimizing the probability of misclassification. And asymptotically, the
predictive density approaches the linear and quadratic in functional form. Thus it can be
viewed that the optimality (as a function of sample size) of the likelihood-based
discriminant functions is a function of how fast the predictive and likelihood densities
converge.

In many fields a dilemma exists, where classification of data into a set of classes is
desirable, but it is impossible or too expensive to obtain a reliable and large training set.
Small training sets are therefore generally the rule in these fields. Classification is thus
attempted by using a small number of training samples from each class. In addition, the
number of training samples from each class is generally different. Small training samples
and differing numbers of training samples for each class create a problem for the
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likelihood-based discriminant functions. Marks and Dunn [1974] analyzed Fisher's linear,
quadratic, and linear "best" discriminant functions, when sample size is small, i.e.,
n = 10 - 100. When sample sizes are moderate (i.e., n = 100 - 500), Wahl and Kronmal
[1977] found that sample size was critical in choosing between the the linear and
quadratic discriminant functions, even when the covariance matrices are unequal.
However, both papers excluded an analysis of the properties of the predictive dis-
criminant function, and this omission forms the basis for this report.

This report investigates the small-sample misclassification rates of traditional likeli-
hood and predictive procedures. First, the likelihood and predictive approaches to
classification are introduced. Second, Monte Carlo simulations compare the misclassifica-
tion rates of the predictive density discriminator and Fisher's linear and quadratic
discriminant functions. The misclassification rates of these functions are compared in the
univariate case under the assumptions of the classes having (1) the same variance or 2 and
(2) differing variances r12 . Simulations also vary parameters concerning class separation
and sample size. These parameters are (1) the separation between class populations,
(2) the number of training samples for each class, and (3) the total number of training
samples. Third, a Monte Carlo simulation measures misclassification rates in a multi-
variate case using Fisher's Iris data. A conclusion follows the simulation results.

Note that the decision theory concept of associating a cost of misclassification with
each class is not pursued in this report. For our analysis of the likelihood and predictive
techniques of classification, the cost of misclassification is considered equal for all classes
and is therefore not considered.
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LIKELIHOOD APPROACH

Let the prior probabilities for classes a1 and =2 be given as P, and P2, respectively.
For a two-class case with known parameters, i.e., ;rl - N(ul, X1, 7 2 - N(u 2 , 1 2 ), assign
an observation x (a p-dimensional array) to a class in the following manner:

Assign to class r1 : L(xI, I 2)P2 1
L(xM2, X 2)p2

Assign to class r2: L(xly 2 , 2 )P2 
<

L(xLUl, 11) is the likelihood of observing x from a normal population N(ul, 1 1). If the
number of classes is greater than two, then the classification rule is modified to determine
the most likely class given x:

Assign to class 7r : L(xlzk, Ek)pk > L(xj/ij, Xi)pj Vi d k

In the univariate case, we replace the covariance matrix Zj and mean vector ji with
their respective scalar values a12 and I :

L(xIui, 0"12)/91
Assign to class ;rt1 : L(xlu2 o,2)p2: 1

L(xU 2, a22)P2

Assign to class r2 : L(xlul, or12)pl

L(x 4u2, Or2
2)P2

The multiclass univariate rule is

Assign to class rk: L(xl/k, ok2)pk > L(xl1ui, Ui2)p, Vi ;e k

When the parameters are unknown, one replaces the parameters with the "best" (in
some sense) estimates for the parameters. In the multivariate n:ormal case, we use forul
and lk

i= - J 1

Ni

(N, - 1)S, =I (xij - j)(xj -

j=1

respectively, where N is the number of training samples and the s corresponds to
training samples from class 1 .
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The linear and quadratic discriminant functions will be derived for the two-class case
with unknown parameters. Note, however, that the previously mentioned modification of
the two-class case is easily applied to these functions to derive the multiple-class decision
rules for the discriminant functions.

FISHER'S LINEAR DISCRIMINANT FUNCTION

If the covariance matrices (of dimension p x p) are assumed equal but unknown, i.e.,

2: = 22 = 1, one can improve S, the estimate of X, by using a weighted average of the
sample variances:

N1  N 2

(N + N2 - 2)S > (xV - 1 )(x1 1 - kl) + (Xzj - Y2)(x 2 - x2)
i=1 j1l

The likelihood decision rule becomes, with associated prior probabilities p, and P2

(2) 1/21S 11/ 2e x p -1
Assign to class 72 : 2

(2;) /21 I1/e~ _1 (X - jC2)'s- (X - JC2)P1
2

otherwise assign to class 0r2 (ratio is < 1). Cancelling the constants, multiplying the
prior probabilities to the other side, and taking the logarithm of both sides, the equa-
tion can be written as the following:

1 -1(X 1 p2Assign to class r : (X- 2 )'S( -X 2 )-2(x- P)'S (- ) a i

Expanding the left side and reducing, one is left with the linear discriminant function:
1

Assign to class , x'S-l(xl - j2) - 1 (Y- K2 )'S-l(x'l - K2) Z!: In p 2

2Pi
1

Assign to class ;r2 : x'S-l(xl -2) -- (-- 2)'S- 1(i1 -2) Z In p 2

2Pi

This equation describes a hyperplane decision surface, which is perpendicular to the
vector between the means K, and r2. For a derivation of these equations, see Ander-
son [1984].

For the univariate case, one replaces vectors with the corresponding scalar values. The
linear discriminant function now becomes

x (X -X 2) 1 P2
Assign to class ;r1 • T (I + 52) (X - X2) In P2S 2S Pi

x(1 - X2) 1Assign to class r2 : TS-(XI + 2)(X1 - X2) lnP2
S 2SP

.. . .• I I I I I I4



If PI =P2, then the logarithm of their ratio equals 0, and the univariate linear
discriminant equation can be further reduced to the following:

1
Assign to class or :x(I1-X 2) 1 -(X1 +X2)(X1- X2)

2
1

Assign to class r2 : x( 1 -x-2) 1 (X1 + 5 2) (1 -X2)2

This is equivalent to finding on which side observation x lies in relation to the
midpoint of the line segment between the class means X, and X2 (the hyperplane is a
point). A graphical example of the univariate linear discriminant function for two classes,
with £1 and x2 equal to 4.0 and 6.0, is given in figure 1.

0.7 CLASSIFY CLASS 1 CLASSIFY CLASS 2

0.6

0.5

0.4

0.3

0.2

0.1

3 4 5 6 7 8

Figure 1. Linear discriminant function.

FISHER'S QUADRATIC DISCRIMINANT FUNCTION

In the p-dimensional multivariate case, if the covariance matrices of the classes are
not considered equal, then the decision surface is not linear (a hyperplane), but quadratic.

Hence the term quadratic discriminant function. Consider the case with two classes o1
and X2, with respective prior probabilities pi and P2, sample mean vectors X-i and j-2, and
sample covariance matrices S1-1 and S2-1.The quadratic discriminant function is based on
the ratio of the likelihood functions given x times the respective prior probability, and can
be initially written (without simplification) as the following rule:

(2r)1/21SI 11/2exp - 1 (x - X.)'S 1
4(x -

Assign to class ;r1 : 2>
(2a) 1/21S111/ 2exp - 1 (X - E 1 '(X -

2
Otherwise assign to class ar2.
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This function can be written in a simpler form. Taking the logarithm of both sides and
simplifying the equation gives a general form of quadratic discriminant function:

Assign to class , : (x- '2)'S 2 (x- -2)- (x- E)'S (x-Yi) - ln -2-+2In L1S11 P22Is i1 nP2

Assign to class OT2 " (x- -2)'S'(x- -2)-(x - )'S-(x - -) - in I-S2 I +22S11 P2

If the prior probabilities p2 and pi are equal, a logarithm of their ratio equals 0, and
the quadratic discriminant function can be rewritten as

Assign to class 7r, : (x- ?2)'S 4(x- 2)- (x-j-1 )'S (x- c) -
IS21

Assign to class r2 (x- '2)'S(x- -2)- (x- - )'S(x- 1 ) <In IS 1

For the univariate two-class case, one again replaces the vectors with scalar values,
and the quadratic function can be written as

(x-X' 2)2  (x- -1 )2 >_is 2
Assign to class h : - > In

S2 $1 $1

(x-X 2)2  (x - z)2 __Is 2
Assign to class ;r2 : X In

$2 $ $1T

An example of the decision regions created by a univariate quadratic discriminant
function is shown in figure 2.

CLASSIFY
CLASS 2

1.4

1.2

1.0 X i

0.8 CLASSIFY CLASSIFY
CLASS 1 CLASS I

0.6

0.4 n

0.2

3 4 5 6 7 8

Figure 2. Quadratic univariate example.
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THE PREDICTIVE DENSITY-A BAYESIAN APPROACH

A Bayesian approach to classification is based on computing the predictive density the
probability p(z I K, Si, ;r,), where z is a future (p-dimensional) observation. The predic-
tive density replaces the likelihood function in the classification rule. The predictive
density incorporates knowledge about how many sample points are being used to estimate
the density, and therefore the predictive density becomes a function of the sample size Ni.
Given definitions of i, Si, based on Ni observations previously defined, a Bayesian
derivation of the probability that the observation z belongs to class ni (i.e.,
p(ari I K, Si, z) for i = 1, ... , K) follows. For details on the Bayesian approach, see Press
[1982]. The followirg derivation is due to Geisser [1964].

Define the joint prior probability density of nri and liX as the following:

g(yZi)7rcioy2.F ' 0C [2y. )/2o-r~riar2

where p is the dimension of ui . This joint prior probability is called a reference prior
and indicates no prior knowledge of the distribution. Another constraint is that p < N,
so the covariance matrix is not singular. Now we have from Geisser [1964, p.72] that
the joint density of K, Si, conditional on the parameters Y, , 2:j, and 7ri, has the fol-
lowing form:

P(Xi, Slli, -", i) 70 ISi(Ni-2-p)/22 ,Ji- Ni/2

x exp {--itr2- [(Ni - 1)Si + (. -/ui)(Yi -1ui)']}
2

Multiplying p(k, Si I pi, Zi-1, ri) by the joint prior distribution gives

p(U, 2' 1 K, Si, i) a Iyii(Ni-p-1)/ 2exp{ -trX71 [ (Ni - 1)S1 + (fic -/i) (zi)']}
2

Integrating over the parameters yt and 2:i, the predictive density for an observation z
is obtained:

p(z I xi,S,, 1 ) = f fp(x If ,, 2:,7",g,)p (U, 2:,1li, Si,7,) / ,ax, -I

IV, 4+) +__ 1/2Ni
-- ?+ - (X - i)'S 1 (x -

7 1)SiI1/2

7



Classification of an observation z into a class 3r1 is according to

p(at I z, i, SI) p(z I Ks Si, 70pi

where pi is the prior probability of class oi. Therefore, the two-class decision rule is

the following:

Assign to class a, : p(ari I z, K, S)
P(Z2 I Z, j2, S2

Assign to class r2 : < z,,SO <
P(02 I z, Y2, S2

This is the predictive-odds ratio for classifying z into 7r, as compared with cr2 .

Expanding the decision rule gives the following result:

Assign to class .r, if

( ____ (N-

((N1 1)S121

N, r +(~ ( N , X-32 ,S1- X-3i
1-NI+r( N,-)I (NJ~ 1) S11/ VN2- I2

).

(N2 )J r- (2 - 1)21 1+ N2-- (X - 32)'S-'X -(x 122P

Otherwise assign the observation to class 9r2. This can be simplified to the following

form:

1 N2 (x11' (- 222

Assign to class ;rl K N2 1 > 1

+ N- i (x- _ 'Si)x - ji 12NI

8



otherwise class 7r 2 , where K12 is a constant not depending on x

' (N (2
K12 NI(N 2 + 1/2 P ( )r(N2 P) I(N2 - 1)S211/

(P2) (N 2(N, + 1)) (N)(Nip) ( N2 - 1)S211/

The predictive discriminant function is the ratio of two multivariate Student t-distribu-
tions. This gives the function several nice properties. One, the sample sizes need not be
the same for the function to be applicable, as is implicit in the likelihood-based
approaches. Two, since the discriminant function is a quadratic function, the covariance
matrices need not be equal, which is required (or assumed) by Fisher's linear dis-
criminant function. Figure 3 is an example of the predictive distributions generated from
two t-distributions with equal sample variances but unequal number of samples per class.

0.35

0. CLASSIFY

0.5. CLASS 2

CLASSIFY .CLASS I CLASSIFY
0.15 :r2 CLASS 1

0.1

-4 -2 2 4 6 8 10

Figure 3. Univariate predictive distributions
for N(0,1) with N=3 vs.N(4,1) with N=6.

The extension of the two-class case to a multiclass decision rule is simply

Assign to class :k P (2rklz, x-k, S) > p(ar2Iz, K, Si) Vi e k

9



For the univariate case, the decision rule is simplified to the following:

1+ N2  (X _X2 2 )1/2N2

N2+1 S
Assign to class a,1  K ,N > 1

+ 1 (x2+ 1 S )2)1 /2N 2

where K12 is defined as

K1 (N,(N 2 + 1 1/2 (()2 ;P 21NA- 1)S21 1/2
VP) N2(N1 +1)j r()(N ;P) (I(N1 - 1)S11)

The multivariate (univariate) t-distribution incorporates the information of the variabil-
ity of the mean and variance attributable to the number of training samples. It is
asymptotically normal, and therefore one could view the linear and quadratic functions as
asymptotically approaching a t-distribution as n gets large (rather than the converse). Note
that the number of points needed for the multivariate likelihood and predictive dis-
criminant functions is a function of the dimensionality of the data. The higher the
dimensionality, a greater number of training samples are needed for a reasonable and
reliable estimation of the parameters. The relationship of class training sample size to
misclassification rates, and therefore discriminant performance, will be investigated in the
next section.

10



NUMERICAL SIMULATION AND ANALYSIS

To understand the relationship and capabilities of the discriminant functions discussed
in the previous sections, Monte Carlo simulations have been made to measure the effects
of modifying (1) the parameter values of the underlying class populations, and (2) the
number of training samples for each class, for the misclassification rates of the
discriminant functions. A Monte Carlo analysis of the relationship between the training
sample size and misclassification rates of the discriminant functions is also performed on
a multivariate data set, i.e., Fisher's Iris data.

UNIVARIATE TWO-CLASS CASE

The analysis of the univariate two-class case was performed as follows: The experi-
mental parameters of population class variance and training sample size were set at
various values, and the probabilities of misclassification were derived through Monte
Carlo simulation. The simulations were performed according to the following algorithm:

1. For each class, the population parameter values, and the number of training
samples, were sent via the argument list to the program.

2. The program generated a training set (of the specified number) as well as a test
set of random numbers (currently 1000). Half of these test cases were gener-
ated from a normal distribution with class or specified parameters (i.e., mean
and variance). The other half of the test cases were generated from a normal
distribution with class OT2 specified parameters.

3. Each test point (from both classes) was classified to belong to class or1 or class
X2 by the discriminant functions. A count of the misclassifications was kept
and the results were printed.

4. Steps 2 and 3 were repeated a number of times (300 in the cases presented
below), generating misclassification samples for the discriminant functions, as
a function of the parameter values passed to the program. The average of these
misclassification samples was output as the result.

MISCLASSIFICATION RATES AS A FUNCTION
OF TRAINING SIZE AND RATIO OF VARIANCES

To compare the capabilities of the three discriminant functions previously discussed in
the small training sample problem, the average misclassification rates of the discriminant
functions were measured and compared over several different training sample cases. With
the different training sample sizes, and for each case of training sample sizes, the

11



variance of class X2 ranged in value. For the given class training sample, an analysis was
performed of the effect of the relative variance ratio between the classes and discriminant
misclassification rate. In all cases, the prior probabilities of the two classes were
considered equal. The details of the analysis follows.

Class ;rl was defined to have a normal (0,1) distribution. Class t2 had a normal
(4,ca2) distribution, where a 2 was varied from -L to 256. Figure 4 graphically details

256
several examples of the class 7r, and or2 configurations. Since the "distance" between two
univariate populations is, in the Mahalanobis sense, a function of the variances of the
populations, the distance between the classes was modified despite the fact that the
centers of the distributions were kept constant throughout the analysis. By allowing the
variance of class Z 2 to vary in value, the distance between the two classes can be viewed
as a function of the class a 2 variance.

1.75

1.50

1.25 -

1.00

0.75 CLASS :r2

0.50 CLASS zi

0.25

-2 2 4 6

Figure 4. Class ;rl and class Zr2 populations, showing
several ;r2 distributions with different variances.

The simulations were performed for several cases of equal and unequal training
samples (figures 5-14 and tables 1-10). In case 1, both classes had an equal number of
training samples. Case 2 was an example of unequal samples from the classes. Case 3
reversed the unequal number of samples from each class, to see if the discriminant
functions were biased by sample size. Cases 4, 5, and 6 provided more information about
various sample size configurations and the average misclassification rates for the
discriminant functions. Cases 7 and 8 investigated the misclassification rates when
distance between the means of the classes was increased and decreased, respectively.
Cases 9 and 10 explored the variation of misclassification rates caused by varying the
sample size of one of the distributions.

12



An explanation of figures 5-14 is in order at this time. The range of the plot is a
logarithmic scale, based on the ratio of the standard deviations of the class populations.
This linearizes the ratio of the standard deviation, moving the case of equal standard
deviations to the point 0, and assigns equidistant points to reciprocal values of the ratio.

Case 1. Fqual number of training samples for each class.

0.30 "

/
0.25 /

PREDICTIVE 0.20 /
UNEAR /

-QUADRATIC

0.10

0.05

-2 -1 1 2 In[a2/u1l]

Figure 5. Probability of misclassification for various class Xr2
variances, given an equal number of training samples N1 = N2 = 6.

Table 1. Average misclassificatioi rates for discriminant functions, given
various ratios of the population standard deviations -S, with N1 = N2 = 6.

0l

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0126 0.0126 0.0138 0.0143 0.0278 0.0628 0.0989 0.1876 0.3078

quad 0.0031 0.0059 0.0164 0.0165 0.0429 0.0695 0.1053 0.1712 0.0921

pred 0.0002 0.0025 0.0139 0.0122 0.0381 0.0647 0.0998 0.1644 0.0843
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Case 2. Unequal number of training samples for each class.

0.30

0.25 "

/

PREDICTIVE 0.20 /
LINEAR /

- QUADRATIC

0.5

0010

0.0

-2 -1 1 2 [njo2/ol]

Figure 6. Probability of misclassification for various class X2
variances, given an unequal number of training samples N1 = 6, N2 = 18.

Table 2. Misclassification rates for discriminant functions, given various
ratios of the population standard deviations _2 , with N1 =6, N2 =18.

Ol

Disc.
Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0123 0.0119 0.0124 0.0148 0.0259 0.0610 0.0939 0.1750 0.2857

quad 0.0003 0.0019 0.0077 0.0148 0.0297 0.0671 0.1012 0.1646 0.0889

pred 0.0001 0.0014 0.0061 0.0125 0.0279 0.0622 0.0945 0.1603 0.0814

These results are fairly comparable to case 1, with the increased number of training
samples from class 2 lowering the misclassification rates of all the discriminant functions.
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Case 3. Unequal number of training samples-numbers exchanged from case 2.
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Figure 7. Probability of misclassification for various class 7r 2
variances, given an unequal number of training samples N, = 18, N2 = 6.

Table 3. Misclassification rates for discriminant functions, given various
ratios of the population standard deviations -2, with NI = 18, N2 = 6.

al

Disc.
Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0118 0.0118 0.0121 0.0128 0.0254 0.0621 0.0981 0.1899 0.3092

quad 0.0030 0.0049 0.0088 0.0170 0.0315 0.0612 0.0926 0.15143 0.0736

pred 0.0002 0.0017 0.0064 0.0127 0.0281 0.0599 0.0917 0.1499 0.0726

The results are comparable to case 2. Note that the quadratic function misclassifica-
tion rate is an order of magnitude larger than its value in case 2 when the ratio of
standard deviations is 6.
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Case 4. Differing number of training samples.
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Figure 8. Probability of misclassification for various class 2r2
variances, given an unequal number of training samples N, = 6, N2 = 3.

Table 4. Average misclassification rates for discriminant functions for
various ratios of the population standard deviations ! , with N = 6, N2 = 3.

01

Disc.
Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0141 0.0146 0.0146 0.0149 0.0296 0.0685 0.1101 0.2151 0.3162

quad 0.0227 0.0279 0.0416 0.0460 0.0625 0.0916 0.1211 0.1786 0.0958

pred 0.0013 0.0075 0.0164 0.0228 0.0400 0.0746 0.1082 0.1697 0.0871
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Case 5. Exchanged number of training samples from case 4.
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Figure 9. Probability of misclassification for various class r2
variances, given an unequal number of training samples N1 = 3, N 2 = 6.

Table 5. Average misclassification rates for discriminant functions for
various ratios of the population standard deviations _, with N1 = 3, N2 =6.

al

Disc.
Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0141 0.0146 0.0146 0.0294 0.0294 0.0659 0.1018 0.1952 0.3051

quad 0.0042 0.0088 0.0256 0.0394 0.0629 0.1043 0.1407 0.2062 0.1228

pred 0.0004 0.0037 0.0128 0.0210 0.0437 0.0795 0.1164 0.1877 0.1033
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Case 6. Extremely small number size for class X2.
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Figure 10. Probability of misclassification for various class ,t2
variances, given an unequal number of training samples N1 = 10, N2 = 2.

Table 6. Average misclassification rates for discriminant functions for
various ratios of the population standard deviations _ with N1 = 10, N2 = 2.

al

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0117 0.0116 0.0128 0.0155 0.0306 0.0695 0.1102 0.2320 0.3183

quad 0.0718 0.0765 0.0962 0.0956 0.0989 0.1197 0.1494 0.1951 0.1070

pred 0.0023 0.0076 0.0143 0.0224 0.0384 0.0739 0.1088 0.1651 0.0827

The behavior of the quadratic discriminant function in case 4 and the above case
clearly shows an inability to handle small sample sizes even when the distributions are
quite separated. Indeed, the quadratic performance is worse than the linear in these cases,
even when the variances are quite different. The predictive distribution does not exhibit
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the same problem, but handles small sample sizes well across all values of the class gr 2

standard deviations.

Case 7. Distance between means of classes is increased.
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-2 -1 1 2 ln[o2/alI

Figure 11. Average misclassification rates when distance between
means is increased N1 = N2 = 6.

Table 7. Average misclassification rates when distance between means
is increased, for various ratios of the population standard deviations
.2 with N1 =N2 =6.

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0008 0.0008 0.0008 0.0009 0.0019 0.0143 0.0375 0.1189 0.2853

quad 0.0004 0.0006 0.0020 0.0032 0.0094 0.0198 0.0386 0.1062 0.0828

pred 0.0000 0.0001 0.0009 0.0018 0.0064 0.0160 0.0330 0.1002 0.0757
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Case 8. Distance between means is decreased, with equal sample sizes.

0.35 -- -.
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Figure 12. Average misclassification rates when distance between
means is decreased N1 = N2 = 6.

Table 8. Average misclassification rates when distance between means
is decreased, for various ratios of the population standard deviations
a2, with N1 = N2 =6.

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0809 0.0822 0.0995 0.1223 0.1674 0.2193 0.2565 0.3356 0.3318

quad 0.0256 0.0604 0.1017 0.1355 0.1816 0.2330 0.2572 0.2201 0.0920

pred 0.0185 0.0541 0.0978 0.1296 0.1770 0.2279 0.2522 0.2175 0.0839
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Case 9. Misclassification rate as a function of class N2 training sample size,
1

ar2 =- -
16
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0.04 - QUADRATIC
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Figure 13. Misclassificition rates as a function of class r2
training sample size, with 02 = '

01 16

Table 9. Misclassification rates for various ratios of N2 ,
given -= 1 , N1 = 15, #1 =0,1U2= 2.

oI  16

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.0806 0.0804 0.0821 0.0802 0.0801 0.0798 0.0815 0.0801 0.0809

quad 0.1194 0.0626 0.0427 0.0321 0.0249 0.0200 0.0172 0.0155 0.0147

pred 0.0363 0.0259 0.0206 0.0186 0.0168 0.0156 0.0148 0.0143 0.0138

As shown before and also seen here, the quadratic discriminant function seems to be
unstable in the parameter estimations at low sample sizes, and the misclassification rate
is worse than the linear, even though the variances are very different. The predictive
function does not show this problem, but is the best discriminant function for this case.
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Case 10. Misclassification rate as a function of class X2 training sample size,
o2= 1.
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Figure 14. Misclassification rates as a function of class n 2
training sample size, with 2. =

01

Table 10. Misclassification rates for various ratios of N2 ,
given L = 1, N1 = 15,/tl = 0,/ = 2.

al

Disc.

Func. Ratios of Standard Deviations

1/16 1/4 1/2 2/3 1 1.5 2 4 16

linear 0.1782 0.1691 0.1683 0.1656 0.1647 0.1636 0.1638 0.1637 0.1625

quad 0.2377 0.1976 0.1839 0.1772 0.1724 0.1696 0.1664 0.1662 0.1635

pred 0.2017 0.1793 0.1746 0.1700 0.1685 0.1680 0.1657 0.1655 0.1634

When the variances are equal in value, the misclassification rates of the predictive and
quadratic discriminant functions are marginally larger than the linear function, which
should be the clear winner. Note that the predictive and quadratic functions quickly
converge on the linear function in performance.
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MULTIVARIATE CASE-FISHER'S IRIS DATA

An analysis was performed of the misclassification rates of the discriminant functions
on a real multivariate data set to examine the effect of small sample sizes on the
discriminant functions in a multivariate environment.

The data consisted of three classes of Iris flowers. This was the data set used by
Fisher in analyzing the linear discriminant function. The parameters measured were petal
width, petal length, sepal width, and sepal length. The data consisted of 50 measurements
from each class. Figures 15, 16, and 17 are projections of the data for various features.
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Figure 15. Fisher Iris data-petal length vs. petal width.
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Figure 16. Fisher Iris data-sepal length vs. sepal width.
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Figure 17. Fisher Iris data-sepal length vs. petal width.

Note that the L Setosa is well separated from the other two plants. The misclassifica-
tions therefore will occur mostly t. tween L Versicolor and L Verginica. For this reason, the
simulations will examine misclassification rates when the training sample sizes of
I. Versicolor and I. Verginica are modulated. Another reason for this is that the petal width
of I. Setosa does not vary much, and generating small samples from this class quite often
generates a degenerate covariance matrix. This is due to the fact that the measurements
are integers, and a random set of observations might have the same value for a feature,
thereby creating a singular covariance matrix. Indeed, the integer nature of all the
observations preclude very small sample size comparisons (if the samples are to be
independently selected).

The analysis varied the training sample sizes from the classes of data, and the
probabilities of misclassification were derived through Monte Carlo simulation. The
simulations were performed as follows:

1. The training sample sizes for the three classes were read from the command
line. The observations were also read into the program from a file. Since it is
"bad" practice to test on an observation used for training, the observations for
each class were randomly divided into a training and a testing set. If an obser-
vation was used in training, it was not used to test the discriminant functions.

2. For each class, a uniform random number generator generated a set of real
numbers that were converted to integers in the range of the number of observa-
tions for the class. Since duplicate numbers can be generated, the process was
repeated for duplicate numbers until the members in the set were unique.
These numbers were used as indexes into the array of observations, indicating
the observations to be used as the training set.

3. The observations corresponding to the index values were used as the training
set, and a sample mean and covariance were generated. The observations not
indexed were used as the testing set.

4. The discriminant functions were tested with the test set, and the misclassifica-
tion rate was computed.
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5. Steps 2 through 4 were repeated for a number of iterations, and the averaged
results were reported.

MISCLASSIFICATION RATES AS A FUNCTION OF TRAINING SAMPLE

SIZE

To measure the misclassification rates, the training sample sizes of I. Versicolor and
I. Verginica were varied and the results are shown below. Misclassification rates were
measured when (1) one class' training sample size was varied, with the others' remaining
constant, and (2) two classes' training samples were varied concurrently. The results are
shown in figures 18 and 19, with corresponding tables 11 and 12.

Note that the projections of the covariances of the three classes of plant are quite
similar, and therefore one should expect that the linear discriminant function will
outperform the quadratic and predictive discriminant functions for this data set. Also, due
to the discrete nature of the data, a fairly large set (> 10) of class ;rl (I. Setosa) training
samples was required during the simulations. This is due to the fact that the petal length
of the L Setosa is predominantly the value 2, and invariably a small random sample of the
class would cause a singular covariance matrix (all the training samples would have a
petal length of 2). The large set of I. Setosa helps the linear discriminant function
stabilize the pooled covariance matrix and thereby improves the linear function's
performance.

Case 1. L Vesicoklr's training sample size varied, other classes' training sizes
constant.

0.25
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I I . .I I I I ;
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Figure 18. Misclassification rates for various sample sizes of I. Versicolor.
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Table 11. Misclassification rates for various values of N2 ,
given N1 = 20, N3 = 15.

Disc.

Func. Values of N2

N2  6 8 10 12 15 20 25

linear 0.0519 0.0497 0.0483 0.0482 0.0451 0.0424 0.0429

quad 0.1783 0.1145 0.0937 0.0898 0.0885 0.0968 0.1080

pred 0.2074 0.1213 0.0937 0.0752 0.0681 0.0609 0.0571

In this case, the predictive function shows more instability at lower sample sizes than
the quadratic function, but at higher sample sizes converges quickly to the performance of
the linear discriminant function. Again, it is expected that the linear function will perform
best because of the similarity of the covariance matrices of the classes. Notice that the
quadratic function is not converging, but is diverging at the higher sample sizes. Whether
this is a true divergence or just an anomaly due to the variation in sampling size is not ar
issue, but the quadratic function is not converging to the performance of the lineai
discriminant function for these sample sizes.

Case 2. L Versicolor and L Verginica training sample sizes varied together, L Set=
training size constant.

0.200

0.175 %PREDICTIVE

LINEAR
0.150 OUADRATIC

0.125 -

0.100

0.075

0.050 --

0.025

I I I I I I I , I

7.5 10 12.5 15 17.5 20 22.5 25

SAMPLE SIZE

Figure 19. Misclassification rates for various equal sample
sizes for I. Versicolor and I. Verginica.
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Table 12. Misclassification rates for various values of
N2 = N3 , given N1 = 20.

Disc.

Func. Value of N2 and N3

N2, N3  6 8 10 12 15 20 25

linear 0.0624 0.0581 0.0516 0.0485 0.0451 0.0399 0.0350

quad 0.1783 0.1241 0.1025 0.0973 0.0885 0.0848 0.0758

pred 0.1618 0.1165 0.0871 0.0739 0.0681 0.0602 0.0524

Note that this test gives the quadratic discriminant function a better chance to perform
well, since one of the underlying assumptions of the quadratic function is that of equal
training samples from each class. The two classes which overlap in the feature space
(I. Versicolor and I. Verginica) are the two classes with an equal number of training
samples. Note, however, that the quadratic discriminant function is still outperformed by
the predictive discriminant function.
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CONCLUSION

UNIVARIATE CONCLUSIONS

Predictive Discriminant Function Versus Quadratic Discriminant
Function

The quadratic discriminant function is asymptotically predictive-as sample sizes go
up, the quadratic function's misclassification rates approach those of the predictive
discriminant function. At low sample sizes, quadratic function shows instability in
variance estimates for well-separated populations, and its performance can be worse than
even that of the linear discriminant function for small sample sizes and unequal
variances. A very important point is that, in every case, and in every univariate simulation
made, the likelihood-based quadratic function has been inferior (i.e., higher misclassifica-
tion rates) to the predictive discriminant function.

Predictive Discriminant Function Versus Linear Discriminant Function

The linear discriminant function outperforms the predictive discriminant function
when covariances are near-equal, because the assumption of equal variance allows the
use of pooled variance for the linear discriminant. Linear performance is poor when the
underlying population variances are not close in value. Note that even when the variances
are equal, the predictive discriminant function performs nearly as well as the linear
discriminant function, especially when compared to the performance of the quadratic
discriminant function.

MULTIVARIATE CONCLUSIONS

Predictive Discriminant Function Versus Quadratic Discriminant
Function

In the multivariate case, the predictive discriminant function displays the interesting
ability of instability when the sample sizes are small. However, the performance of the
quadratic discriminant function is shown to be equally unstable, and the quadratic
function misclassification rate decreases more slowly as sample size increases. This
instability is understandable when one understands that both the quadratic and predictive
discriminant functions are attempting to estimate a four-dimensional covariance matrix
with a sample size of as few as six observations. It is therefore understandable that the
error rates for these discriminant functions are quite large with six points. Note that the
predictive discriminant function falls quickly as a function of the training sample size n,
with n = 2 or 3 times the dimension of the observation vector X for a fairly stable estimate
of the covariance matrix.
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Predictive Discriminant Function Versus Linear Discriminant Function

Since the data in the multivariate case appear to have similar covariance structures, it
was expected that the linear discriminant function would outperform the predictive
discriminant function for the Fisher Iris data. This has been shown to be true. The linear
discriminant function is able to use the similarity of the covariance matrices to stabilize
its estimate of the covariance structure of the classes.

FINAL STATEMENT

To conclude, the predictive and linear discriminant functions generally are (1) and (2)
in performance. The linear function performs better when variances are similar, while it
performs poorly if the variances of the distributions vary widely. The predictive dis-
criminant function shows better performance than the quadratic function in almost all
situations, since it is taking into account more information (i.e., sample sizes). Therefore,
in case of classes with small training sample sizes, the predictive discriminant function is
preferable to the quadratic discriminant function in minimizing misclassification rates.

This work has shown that, for small training set classifications, the predictive
discriminant function should not be neglected. The predictive discriminant function is
versatile in its application, minimizes the number of assumptions made, and performs
reasonably well over the range of cases tested.
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